

Do women manage land more sustainably than men? Evidence from a 10-year Uganda soil fertility management panel data

Ephraim Nkonya, & Edward Kato, Wei Zhang

International Food Policy Research Institute

CGIAR Collaborative Platform to Gender Research KIT Amsterdam. Dec 4-8, 2017

outline

- Motivation
- Analytical approach & data
- Results
 - Land asset ownership, method of acquisition and use across gender
 - Land management & fertility across gender
 - Drivers of land degradation
- What should be done to enhance on female operators' soil fertility?
- Conclusions and implications

Motivation & contribution of study to literature

- Land ownership and management differs significantly across sex of owner/operator (Nkonya et al 2008)
 - Female land owner/operators have large positive impacts on household food and nutrition on as they tend to choose more nutritious crops (horticultural & leguminous crops – which are easy to grow on smaller plots & more nutritious (lbid)
- However, women access and control of land resources and rural services is limited (Doss 2010; Kagwanja 2012)
- We use long-term and gender-disaggregated land management practices obtained from Uganda to examine changes of management and soil fertility over 10 year period

Analytical approach

- Biophysical approaches: We determine soil nutrient balance which is the balance of inflows of soil nutrients minus the outflows (Stoorvogel & Smaling 1990)
- Soil samples collected in 2003 & 2013 from the same location to form panel data of:
 - Soil nutrients and soil carbon obtained by lab analysis combined with land management
 - · Land management practices obtained by interviewing plot operators or managers
- Socio-economic approaches:
 - Simple statistical analysis comparing management practices across sex of plot owner/operator
 - Econometric analysis to determine drivers of soil fertility degradation

Data – household, plot surveys & soil lab analysis

Households	Plots
136	301
215	540
223	758
226	247
900	1,846
	215 223 226

Results

Plot owner

How plots were acquired?

- As expected, inheritance accounts for two thirds of method of land acquisition
- Contrary to expectations, 70% of women acquired their land through inheritance

Baseline Nutrient stocks, 2003

- Female-managed plots had higher N, P & K at baseline than male-managed plots
- But female-managed plots have steeper slopes

Soil fertility management practices across sex of plot operator

70.3

0.000***

	Men	Women	Joint	
% Using Fer	tilizer	Ao is		
2003	1.4	0.8	0.0	
2013	3.4	0.0	0.0	
P-value	0.001***	0.319	-	
% Using Org	ganic Inputs			
2003	29.4	15.7	6.9	
2013	11.9	5.8	4.0	
P-value	0.000***	0.004***	0.010***	
% Using tre	es/agroforest	try		
2003	41.1	53.6	25.7	

64.6

0.000***

58.4

0.487

2013

P-value

- Use of inorganic fertilizer slightly increased on male-managed plots. No significant change on women and jointly managed plots
- Use of organic inputs decreased for all groups while adoption of agroforestry increased significantly for male and jointly managed plots.

Nutrient (N & P) inflows & outflows

Nutrient balance across sex of plot operator			
	Men	Women	Jointly
Nitrogen Balance			
2003	-76.7	-96.8	-76.4
2013	-96.5	-148.2	-99.1
% Change	-25.8 %***	-53.0 %***	-34.9 %***
Phosphorus Balance			
2003	-8.4	-19.3	-9
2013	-20.7	-22.2	-14
% Change	-146 %***	-15.5 %*	-55.6 %***
Potassium Balance			
2003	-94.1	-124.6	-66.9
2013	-132	-112.9	-112.7

-68.4 %***

-41.0 %***

% Change

			NAME OF TAXABLE PARTY.		
C	. /.	/1	Variable	2003	2013
Drivers of eros	sion (t	ons/na	Population density	-0.596**	-0.299
	2000	2012	Land tenure (cf freehold)	
Variable	2003	2013	 Customary 	-3.983***	-2.131*
Plot Manager (cf Male)		 Mailo 	-5.819***	-4.434***	
 Female 	1.17	5.534***	 Leasehold 	-6.278***	-0.858
• Joint	2.237**	2.747**	Squatter tenure	-16.593	-18.796
Plot slope	2.372***	3.270***			10.750
Soil depth	0.106***	-0.05	Land management pract		1 205
Plot manager educ. (cf Post-secondary)		• SWC	0.406	-1.305	
			 Use fertilizer 	5.805**	22.264***
 No Formal Educ. 	-1.655	-2.11	 Crop rotation 	2.916***	4.572***
 Primary 	-0.487	-1.668	 Use ISFM 	-7.613	-25.471*
 Secondary 	-2.833*	-4.407**	 Agroforestry 	-3.628***	-3.073***
Distance to market (Km)	0.332***	0.364***	Type of crops planted		
Non farm activity	-1.131	-2.883***	Coffee/Banana	-4.379***	-4.402***
livestock	-5.124***	-3.025*	• Cereals	0.795	-2.861***
credit	1.444***	1.286***	• Legumes	3.501***	2.230**
Access to extension	2.785***	0.087	Roots & tubers	0.21	-2.576**

What could be done to enhance land management on female owned/operated plots?

- Improve girl's access to sec. education
- Promote non-farm activities which reduces pressure on land and enhances ability to buy external inputs
- Extension services capacity to promote soil fertility management is weak
 especially promotion of organic soil fertility management practices
- Provide short-term training on modern soil fertility management to in-service providers and incorporate it in ag college syllabus
- Female extension agents reach more women and poorer farmers than male extension agents (Nkonya et al 2008)
 - However, they account for only 11% of extension agents in Uganda (Ibid). →
 increase recruitment of female extension agents

Herbicides

Organic fertilizer

Agroforestry

SWC

Inorganic fertilizers

Plant protection techniques

promoted by extension <u>agents</u>					
Topics promoted	Government (n=137)	NAADS (n=48)	NGO (n=23)		
		Percent reporting			
Improved seed varieties	85.3	81.5	61.5		
Agro chemicals	65.4	62.9	61.5		

28.2

20.5

15.4

10.0

8.3

0.6

44.4

16.7

20.4

11.1

11.1

1.9

19.2

19.2

11.5

7.7

0.0

7.7

Conclusions and policy implications

- Female-managed plots were more fertile in 2003 than men's but have undergone severe degradation in the past 10 years
- Given the favorable impacts on women access and control of land assets, there is need of enhancing their soil fertility management through:
 - Better education
 - Promotion of non-farm activities
 - Access to extension services through
 - Through recruitment of female extension service providers
 - Training extension agents to better provide soil fertility management practices & targeting women farmers

ACKNOWLEDGEMENT

- We thank the following donors for financing different stages of the study:
- The 2003 study was funded by the German Federal Ministry for Economic Cooperation and Development (BMZ)
- The 2013 study was funded by National Science Foundation through University of North Carolina
- CGIAR's Water, Land and Ecosystems (WLE) financed writing this paper

Veel dank

