Scientific Publication

Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: Incongruity of chloroplast and nuclear data

Abstract

Intra- and inter-specific genetic variation was investigated in seven diploid Aegilops species using the amplified fragment length polymorphism (AFLP) technique. Of the seven species, the cross-pollinating Aegilops speltoides and Aegilops mutica showed high levels of intraspecific variation whereas the remaining five self-pollinating species showed low levels. Aegilops bicornis, Aegilops searsii and Ae. speltoides formed one cluster in the dendrograms, while Aegilops caudata and Aegilops umbellulata formed another. Relationships among the species inferred were more consistent with the relationships inferred from studies of chromosome pairing in interspecific hybrids, and previous molecular phylogenetic reconstructions based on nuclear DNA, than they were with those based on molecular plasmon analysis, suggesting that the nuclear genome has evolved differently from the cytoplasmic genome in the genus Aegilops