Combination of thidiazuron and 2-isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature seeds of sunflower (Helianthus annuus L.)
Abstract
Genetic improvement of sunflower (Helianthus annuus L.) through the use of biotechnological tools requires a reliable in vitro shoot regeneration system. Tissue culture protocols reported to date for sunflower suffer from low efficiency, poor reproducibility, genotype dependence and a tendency for flowering in vitro. The present study describes an efficient protocol system for shoot regeneration via direct adventitious shoot organogenesis from cotyledons of mature seeds of sunflower. About 169 media combinations comprising 12 different growth regulator combinations in various concentrations were assessed for induction of shoots from cotyledons derived from mature seeds and also from seedling tissues of 2–20-day-old seedlings. Appearance of shoots from seedling tissues was sporadic and the frequency of shoot regeneration was low. Cotyledon explants from mature seeds were consistent with regard to frequency of adventitious shoot regeneration and number of shoots per explant. A high frequency (93.86 %) of adventitious shoot regeneration was obtained within 2 weeks of culture initiation on Murashige and Skoog (MS) medium supplemented with 9.84 μM 2-isopentenyladenine (2-iP), 2.85 μM indole-3-acetic acid (IAA) and 0.45 μM thidiazuron (TDZ). Use of 2-iP in the shoot induction and elongation media prevented precocious flowering. Statistical analysis revealed significant effects of explant orientation, age of seedlings, and genotype on adventitious organogenesis. Maximum shoot regeneration was obtained when cotyledons from 0 and 1-day-old seedlings were placed with their adaxial surface in contact with the medium surface. The protocol developed was tested on 42 genotypes and found to be applicable to a wide range of genotypes. Histological studies indicated that the shoots originated predominantly through adventive organogenesis from the sub-epidermal and cortical regions