Enhancing maize yield in a conservation agriculture-based maize (Zea mays)- wheat (Triticum aestivum) system through efficient nitrogen management
Abstract
This study evaluated the impact of contrasting tillage and nitrogen management options on the growth, yield attributes, and yield of maize (Zea mays L.) in a conservation agriculture (CA)-based maize-wheat (Triticum aestivum L.) system. The field experiment was conducted during the rainy (kharif) seasons of 2020 and 2021 at the research farm of ICAR-Indian Agricultural Research Institute (IARI), New Delhi. The experiment was conducted in a split plot design with three tillage practices [conventional tillage with residue (CT), zero tillage with residue (ZT) and permanent beds with residue (PB)] as main plot treatments and in sub-plots five nitrogen management options [Control (without N fertilization), recommended dose of N @150 kg N/ha, Green Seeker-GS based application of split applied N, N applied as basal through urea super granules-USG + GS based application and 100% basal application of slow release fertilizer (SRF) @150 kg N/ha] with three replications. Results showed that both tillage and nitrogen management options had a significant impact on maize growth, yield attributes, and yield in both seasons. However, time to anthesis and physiological maturity were not significantly affected. Yield attributes were highest in the permanent beds and zero tillage plots, with similar numbers of grains per cob (486.1 and 468.6). The highest leaf area index (LAI) at 60 DAP was observed in PB (5.79), followed by ZT(5.68) and the lowest was recorded in CT (5.25) plots. The highest grain yield (2-year mean basis) was recorded with permanent beds plots (5516 kg/ha), while the lowest was observed with conventional tillage (4931 kg/ha). Therefore, the study highlights the importance of CA practices for improving maize growth and yield, and suggests that farmers can achieve better results through the adoption of CA-based permanent beds and use of USG as nitrogen management option.