Proteolytic cleavage of surface proteins enhances susceptibility of lymphocytes to invasion by Theileria parva sporozoites
Abstract
A flow cytometric method using anti-parasite antibodies was developed to measure binding of theileria parva sporozoites to the target bovine lymphocyte membrane. Parasite-host cell interactions could be inhibited by monoclonal antibodies to bovine MHC class I and partially by one of two antibodies to BoCD45R. Proteolysis of the lymphocyte surface removed CD45R but not MHC class I determinants, and enhanced sporozoite binding. These observations support the hypothesis that CD45R and CD45R antibodies may non-specifically prevent close approximation between sporozoites and lymphocytes. Interestingly, under normal conditions, sporozoites of T. parva did not attach to lymphocytes from goats, but did so when the cells were treated with the protease, suggesting that receptor(s) for T. parva sporozoites might be present on caprine cells but are not easily accessible. These and other results indicate that proteases may be involved in binding and entry of T. parva sporozoites. Electron microscopy revealed that the process of binding and entry of sporozoites into protease-treated goat lymphocytes was very similar to that of the bovine cells. However, schizonts did not develop and lymphocyte proliferation was not induced, indicating that cell entry by sporozoites and cellular transformation are separate processes.