Variability Assessment of Aromatic Rice Germplasm by Pheno-Genomic traits and Population Structure Analysis
Abstract
While the pleasant scent of aromatic rice is making it more popular, with demand for aromatic rice expected to rise in future, varieties of this have low yield potential. Genetic diversity and population structure of aromatic germplasm provide valuable information for yield improvement which has potential market value and farm profit. Here, we show diversity and population structure of 113 rice germplasm based on phenotypic and genotypic traits. Phenotypic traits showed that considerable variation existed across the germplasm. Based on Shannon–Weaver index, the most variable phenotypic trait was lemma-palea color. Detecting 140 alleles, 11 were unique and suitable as a germplasm diagnostic tool. Phylogenetic cluster analysis using genotypic traits classified germplasm into three major groups. Moreover, model-based population structure analysis divided all germplasm into three groups, confirmed by principal component and neighbors joining tree analyses. An analysis of molecular variance (AMOVA) and pairwise FST test showed significant differentiation among all population pairs, ranging from 0.023 to 0.068, suggesting that all three groups differed. Significant correlation coefficient was detected between phenotypic and genotypic traits which could be valuable to select further improvement of germplasm. Findings from this study have the potential for future use in aromatic rice molecular breeding programs.